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General solutions for the field of a charged particle in 
Brans-Dicke theory of gravitation 

N Van den Bergh 
Physics Department, Universitaire Instelling Antwerpen, B-2610 Antwerpen, Belgium 

Received 2 November 1982 

Abstract. The field equations in the Brans-Dicke (BD) scalar-tensor theory of gravitation 
are solved for a spherically symmetric metric. The solutions generalise earlier conformally 
flat results and may all be considered as describing the field of a charged mass point 
surrounded by a scalar-tensor field. The conformally flat solutions are shown to be not 
physically meaningful for 'standard' BD theory with 20 + 3 > 0.  

1. Introduction 

This paper is intended as a generalisation of the work of Reddy (1979) and Reddy 
and Rao (1981) on the Brans-Dicke theory of gravity. They obtained spherically 
symmetric, static and conformally flat solutions of the BD vacuum and electrovacuum 
field equations. 

The general spherically symmetric vacuum solutions were obtained by the author 
(Van den Bergh 1980) and resulted also in general solutions for Nordtvedt's theory 
of gravitation (Van den Bergh 1982). Now the general solutions of the static spherically 
symmetric field equations are presented for an energy-momentum tensor due to a 
source-free electromagnetic field, without restricting the metric to be conformally flat 
(Reddy and Rao 1981). In 9 2, we reduce the BD-MaXWell equations to some elegant 
form and in 9 3 the general solutions are presented and discussed. It is shown that 
the earlier conformally flat solutions are not physically meaningful for a standard BD 
scalar field with positive energy density. Section 4 contains some concluding remarks. 

2. Field equations 

We follow the notation and sign conventions of Reddy and Rao (1981). The BD- 

Maxwell field equations are 

RI, -i!Rgr, = 8~4-'T1, +~4-'(4,14,i -$giA.k4'k) +6'4,i,i  (1) 

4 ' k , k  = 0 (U # -;, (2) 

F1f,f = 0 (3) 
with 

Tij = Fi/FIi -$gijF,,F" 

Fij =Acj,ij. 
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We assume now that the space-time geometry is given by the general static and 
spherically symmetric metric 

ds2 = -b dt2 + a dr2 + r2 de2  + r2 sin2 6 d o 2  (6) 

with a and b functions of r alone. Taking the electromagnetic field to be purely 
electrostatic, 

A ,  = S l V  (7) 

with V = V(r), the non-vanishing components of the energy-momentum tensor are 
found to be 

(8) 3 T :  = T :  = - T i  = - T 3  = -(2ub)-’(dV/dr)’ 

with, from (3), 

dV/dr = qrf2(ub)’I2. (9) 

r‘= rb - 1 1 2  

Introducing Reddy and Rao’s (1981) radial coordinate 

(10) 

it can be seen that one recovers their formula (7) with 

= b ‘ I 2  dildr. 

It should be stressed (Will 1974) that the asymptotic value do of the scalar field is 
related to the gravitational constant Go, as measured at infinity, by 

(12) 40 = G,’ (4 + 2w)/(3 + 2 w ) .  

With the Brans and Dicke (1961) transformation 
R = 41/24;1/2r 

B ( R )  = &5i’b 

A ( R )  = 44ij‘a(dr/dR)2 

the field equations now read (a superscript prime indicating differentiation with respect 
to R )  

A’ B’ 1 R2v”  -I+- --+- + -=-- 

[R2(B/A)1’2q’]’ = 0 

A(  A B)  A A B  

where we have defined 

t’ = (4*)’/24,’v 

cp = [t(2w + 3)]’” In (&#~i’). 
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Only scalar fields with positive energy density (20 + 3 > 0) will be considered. Defining 

p = (4x)”2q4,1R-1 (22) 

(17), (19) and (20) yield respectively 

d2B/dv = 0 

(d/dv)(B dqldu)  = 0 

d2p/du2 = ip(dq/dv)2 

whereas A follows from (9), or 

A = B-’(dp/du)-’. (26) 

In fi 3 the solutions for this system will be explicitly given, under the boundary 
conditions 

A = B = 1  (or a = b  = 1) (27) 
and 

c p ’ U ’ 0  

at infinity. 

3. Solutions of the field equations 

We assume q > 0, hence t‘ 0 and 

p = - U  + 0 ( v 2 )  

at infinity. Then (23) yields 

B = 1 + 2 A t ’ + v 2  

with A an integration constant (taken to be positive, in order to have positive-mass 
solutions). From (24) one has then 

with ,U a second integration constant. 

( a )  A = I .  
Then (31) gives 

cp =/A?J(l+u)-l  

and the unique solution of (25) compatible with (27)-(29) is 

p = -(J?/,u)(~ + U )  sinh[pu/J?(u + I)]. 

Hence 

A = (sech’ ” ) ( l + y ( l + v ) t a n h  J? 
J:(u + 1) 

(34) 
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( 6 )  A < I .  
Define y = cos-'A and 

x = tan-'(cot y + U  cosec y ) .  

B = (sin2 y )  sec2 x 
q = p (cosec y ) (X  + y - 7r/2). 

(35) 

Then (30) and (31) yield with -n/2 <XG 7r/2 - y 

(36) 

(37) 

If $p2 coset' y < 1 one takes p 2  = 1 - $  coset' y and one verifies that the unique 
solution of (25), (27)-(29) is 

p =p- ' ( secX)  s in [p ( . r r /2 -y -~ ) ]  (38) 

and hence 

A =[sec2p(7r/2-y-X)]{1 -p- ' ( tanX) t a n [ p ( ~ / 2 - y - X ) ] } - ~ .  (39) 

When, on the other hand, :w2  cosec' y 2 1, one takes p 2  = f p 2  coset' y - 1 and then 

p = p-'(sec X) sinh[P (7r/2 - y -X)] 

A ={sech2 p(7r/2-y-X)}{1 -p - l ( t anX)  t a n h [ p ( ~ / 2 - y - X ) ] } - ~ .  

( c )  A > I .  
Define y =cosh-' A and 

1 
2 

coth y + U  cosech y - 1 
coth y + U cosech y + 1 ' 

X = - l n  

Then (30) and (31) yield with X E 1-03, -73 

B = (sinh2 y )  cosech'x 

c,c = p(cosech y) (X + y ) .  

Taking p2  = 1 + $ p 2  cosech' y, the unique solution of (25), (27)-(29) is now 

p = -p-' (cosech X) sinh[p(X + y)] 

and hence 

A = [sech2 p ( X + y ) ] { l  -p- '(cothX) tanh[p(X+y)]}-2. 

By some tedious but straightforward calculations one can verify that in all solutions 
presented here, A,  B and p are smooth and strictly positive on the domain of definition 
of U, i.e. 3-1,0[ , ] - a ,  O[ and]  sinh y -cosh y, O[  for the cases (a), ib) and (c) respec- 
tively. Furthermore, the Ricci scalar 9 can be shown to be 

%? -p4B-'  (47) 

near R = 0, and hence all solutions have a curvature singularity at R = 0 and no event 
horizon (as B > 0 for R # 0). 

Of course, this singularity does not have to be real, since, in a realistic situation, 
the BD electrovac solutions have to be matched to a charged interior solution. To the 
author's knowledge, no such attempt has yet been made for BD theory. 
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We now have a look at the conformally flat solutions of Reddy and Rao (198 1). 

(48) 

The condition for (6) to be conformally flat reads 

a = [l -tr(d/dr) In 612 

or, by the use of (13)-(15), (22) and (30) 

dpldv = -B-'p(A + U )  + B-l12 (49) 

and hence 

p = ( P O -  v)B-l12 

with po an integration constant. 

yield 
Asymptotical flatness of the solutions implies po = 0, and hence (30), (31) and (50) 

k 2  -2C1[2Av2 + ( A 2 +  3 ) ~  + 2A] (51) 

which is clearly impossible for real values of A. It follows that conformally flat solutions 
of the BD-MaXWell equations (with w > 0) do not exist! 

What then does one make of the Reddy and Rao solutions (1981), which effectively 
are conformally flat? A careful look at equation (14) of their paper shows that 
asymptotical flatness of the solution implies 

40 < 0. (52) 

But this means that the effective gravitational constant Go, as measured at infinity, 
would be negative. This can be cured by taking the same solution, but with 2w + 3 < 0. 
Indeed, replacing (21) by 

(53) cp = lf(2w +3)11'2 In 44;' 

d2p/dv2 = - ip(dq/dv)2 (54) 

one has then 

instead of (25). This causes the RHS of (51) to be positive for A = O .  The solutions 
are then given by (36)-(39), but now with p2-1 =$k2cosec y = z g  . Reddy and 
Rao's (1981) solution corresponds to p = 2 or = 6lI2, yielding v = tan X ,  p = -sin X 
and B = sec2 X .  

2 1 2  

4. Conclusion 

We obtained explicit solutions for the static and spherically symmetric coupled BD- 
Maxwell equations, representing a charged mass point surrounded by a scalar-tensor 
field with 2w + 3 > 0. The solutions have a naked time-like singularity at the origin. 
This property remains true, even in the limit of vanishing coupling of the scalar field 
with the gravitational field (w -P CO)! Accidentally this shows that, although the field 
equations of BD theory approach those of general relativity for large values of w ,  the 
global properties of the solutions (e.g. the ones presented here, and the Reissner- 
Nordstrom solution) stay quite distinct. Herewith we generalise an earlier result, 
obtained by Janis et a1 (1968) for uncharged fields. 

Conformally flat and asymptotically flat solutions, as predicted in earlier work, 
are shown to be non-existing for 2w + 3 > 0. 
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The unique known conformally flat solution corresponds in fact to a negative 
energy density scalar field (2w + 3 < 0). This solution is singular too. However, other 
negative energy density scalar-tensor solutions may turn out to be useful, e.g. in 
particle physics (ClCment 1981). 
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